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Biological Transporters as Targets for
New Drug Design

Hui-Po Wang*, Chun-Li Wang

School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan

The biological system, which forms the basis for drug-host, drug-food, and drug-drug
interactions, is full of mechanisms designed to manipulate drug action. These mechanisms,
namely absorption, distribution, metabolism, and excretion {ADME), thus become targets
in pharmaceutical research for optimizing the pharmacodynamic/pharmacokinetic pro-
files of drugs. The body system is also full of resources, such as transporters, for designing
new chemical entities as therapeutic agents. This review highlights current research in
using biological transporters as a proactive approach in drug delivery to optirize efficacy
in the early stages of drug development, and as a target for rational design of prodrugs as
novel therapeutic agents. The structural design of prodrugs using delivery moieties such
as D-phenylglycine for improving intestinal absorption of levodopa is presented as an

_.._t[angp.orter example.

1. Introduction

Mechanism-based drug design, based on the interac-
tion of drugs and specific target proteins {(pharmacody-
namics, PD) is the mainstream in conventional drug
discovery and development. Pharmacokinetic (PK) pro-
file, the descriptor of the drug-host interaction, is usu-
ally conducted in the later stages of drug discovery.
However the disposition of biologically active sub-
stances (xenobiotics by nature) by the body system de-
termines the success of these chemical entities in
becoming therapeutic agents.) As a consequence, the
success rate of bringing chemical entities with potent
pharmacological activity from discovery to clinic is
rather low, estimated to be 1in 2000.2 In most cases, the
failure is due to unsatisfactory PK after the chemical en-
tities have entered the biological system.? Therefore,
integration of PK and PD for optimizing drug efficacy
(PD/PK optimization) and thus increasing the success
rate during the early stages of drug discovery is a com-
mon practice in modern drug research (Figure 1).%*

2. Drug Design Based on Drug-Host
Interaction

Drug delivery systems such as biodegradable polymers
and liposomes are common formulation approaches to
PD/PK optimization in pharmaceutical research. How-
ever, most of the materials used as drug delivery systems
are xenobiotics to the biological system. This system,
forming the basis of drug-host interaction, is full of
mechanisms for drug delivery and biotransformation.’
Some examples associated with drug-host interactions
are changes of drug absorption and renal excretion
via transporters, multiple drug resistance due to efflux
transporters, or alteration in metabolic enzyme activity.
The drug-host interaction mechanisms, namely absorp-
tion, distribution, metabolism, and excretion (ADME),
thus become wonderful resources in manipulating and
optimizing drug action.” Moreover, the application of
ADME mechanism and PK theory in the rational design
of new drug entities during the early discovery stages
has become a modern pharmaceutical approach.®
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Figure1 Evclution of drugrasearch and development from:
(A) Conventional sequential involvement of chemistry, phar-
macadynamics (PD), absorption, distribution, metabolism
and excretion (ADME), then pharmacokinetics (PK); (B) PD/
ADME-Tox abreast; and {C) ADME-based strategy for new
drug design.

3. Transporters in Biological Systems

Itis well-documented that transporters in the intestine,
fiver, kidney, and brain are involved in the upiake and
efflux of chemical substances like food and drugs.® "2
Thus, the function of transports located in specific
tissues highty influences drug disposition and pharma-
cological effects.’®"® Evidence also supports the in-
volvement of transporters in human PK variability and
drug use.'®” The success of using transporters for
specific drug delivery 1o target tissues is thus an impor-
tant consideration in drug design.>?'~2 A predictable
ADME-toxicity modulation is also important in the drug
development process.®* As a result of pharmacovigi-
lance concern, transporters associated with drug-drug
and drug-food interactions have also attracted great
attention from regulatory authorities,”®

4. Transporters as Drug Delivery Systems

Drug delivery across cellular barriers is a challenging
task.®%’ Oral absorption ratio has limited the develop-
ment of many potential therapeutic agents from be-
coming drugs. Therefore, targetable design by utilizing
endogenous transporters is an opportunity for effec-
tive transmembrane drug delivery.?® As the Gl tract is
the primary site for oral absorption of drugs, region-
specific drug delivery using Gl tract absorption and
efflux systems could determine drug bioavailahility
post-oral administration.?*~3' There has been intensive
research on the design of delivery systems for effective
enhancement of transmembrane permeation of poorly
absorbed drugs across biological barriers.>%** Current
approaches to enhance transmembrane drug delivery
include the formulation design of parent drugs,

chemical modification of parent drugs to prodrugs,
and use of biological transporters as targets for design-
ing chemical drug delivery systems.?$*3

5. Transporters and Drug Absorption

The intestinal peptide transporter system for drug ab-
sorption, previously recognized as the proton-coupled
oligopeptide transporter (POT) family, is classified into
peptide transporter 1 (PEPT1), peptide/histidine trans-
porter 1 (PHT1), and peptide/histidine transporter 2
(PHT2).%¢ PEPT1, the main mammalian POT regulating
intestinal peptide absorption, has been under inten-
sive investigation not only with regard to disclosure of
transporting profile from a melecular and pharmaco-
genetic aspect, but also for its usefulness in new drug
discovery.’”~*! The orally absorbable amino-p-lactams
such as the tripeptide mimetics cephalexin and
cephradine,™"" and angiotensin converting enzyme
inhibitors such as the dipeptide mimetics lisinopril and
fosinopril,*®* are substrates of intestinal PEPT1 trans-
porter (Figure 2).°° Recent studies have explored the
structural features of substrates for PEPT1,51°2 from
structural biology and structure-absorption relation-
ship analyses 1o the application of PEPT1 in drug dis-
covery and clinical evaluation.>¥ %

6. Strategies of Using Transporters for
Oral Absorption of Drugs

The prodrug approach is an effective way to improve ab-
sorption and oral bioavailability of drugs3>°—>° Among
these, the use of intestinal transporter systems for de-
signing oral prodrugs that facilitate the transport of
drugs is a growing field in pharmaceutical research.50-62
Most amino acid drugs, such as a-methyldopa and
levodopa, demonstrate inter- and intrasubject varia-
tion of drug availability, to which the absorption fevel
is affected by dietary food.*® To improve bioavailability
by alternative absorption route, we chose a-methyl-
dopa as a model compound for intestinal absorption via
PEPT1 by virtue of in vitro brush-border membrane
vesicles (BBMV) uptake studies. We analyzed the struc-
ture-absorption relationship of amino-fi-lactams and re-
alized that D-phenylglycine and structurally similar
moieties are common core structures in the molecules
of these orally ahsorbable -lactam drugs (Figure 2).
Either directly or via an amino acid spacer, D-
phenylglycine was chemically attached to a-methyldopa
in order to form a series of di- and tripeptide derivatives
of a-methyldopa. The transport of these peptides via
PEPT1 was determined by measuring the uptake in BBMY
prepared from rat intestine. As a result, both carrier-
mediated uptake (V./Kq) and passive diffusion (Kd)
were involved in the uptake of the di- and tripeptides.
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Figure2 Angictensin converting enzyme (ACE) inhibitors and amino-f-lactams are substrates of intestinal peptide transporter 1.
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Unlike the complicated and inconsistent uptake of a-
methyldopa (Figure 3E), D-phenylglycine-c-methyldopa
demonstrated a carrier-mediated consistent uptake
profile (Figure 3A), The high value of V,,/K,, (36.4, rep-
resenting carrier-mediated uptake) and the low value
of Kd {0.14+0.02, representing uptake via passive dif-
fusion) calculated with the Michalis-Menton equation
indicated that the majority of D-phenylglycine-a-
methyldopa is absorbed via the transporter-mediated
process (Table 1).°4%% Other D-phenylglycine-containing
tripeptides also exhibited PEPT1-mediated BBMV uptake,
with lower efficacy than dipeptide D-phenylglycine-
a-methyldopa (Figures 3B-3D). Moreover, the uptake
of D-phenylglycine-a-methyldopa via PEPT1 was more
efficient than that of D-phenylalanine-a-methyldopa,
an o-methyldopa derivative that utilizes essential
amino acids as the delivery tool.®

We further synthesized a series of D-phenylglycine-
containing di- and tripeptides of L-dopa as dopamine
prodrugs with the expectation of improving the

inconsistent oral bicavaHability associated with L-dopa.
In BBMV uptake studies, the dipeptides Gly-Pro, Gly-
Phe and the amino-B-lactam cephradine inhibited the
uptake of D-phenylglycine-L-dopa, while the amino
acids L-phenylalanine and L-dopa did not {Figure 4).
D-phenylglycine was successfully proven to be an ab-
sorption enhancer for guiding amino acid drugs like
a-methyldopa and L-dopa to penetrate through intes-
tinal epithelium via PEPT1 transporter.®®®” Proof-of-
concept PK studies in rabbits indicated that the fraction
of absorption of D-phenylglycine-L-dopa reached
83 1 18%, which is 14 times higher than that of L-dopa.®®
Additionally, the anti-Parkinsonism effect of this dipep-
tide was significantly higher than that of L-dopa.®®

7. Transporters and Drug-Drug Interaction

Transporters are important in manipulating drug deliv-
ery in biological systems and consequently affecting
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Figure 3 Brush-border membrane vesicles uptake of: (A) D-phenylglycine-a-methyldopa; (B) a-methyldopa-D-phenylglycing;
(C) D-phenylglycine-L-serine-a-methyldopa; (D) D-phenylglycine-L-proline-a-methyldopa; (E} a-methyldopa.

their PK profile. The pitfalls of transporter-mediated drug-
drug interactions are an important issue with regard to
safety concerns.”*7° For example, renal excretion, prima-
rily driven by transporters, is important in the elimination
of xenobiotics such as drugs, food supplements, and
herbal medicine.”® Thus, competition for renal transport-
ers is one of the important factors causing drug-drug
interaction. Table 2 summarizes cases of drug-drug
interaction resulting from competition for renal
transporters.””*® Cimetidine and probenecid, for exam-
ple, were reported to exhibit drug-drug interaction via

competition toward renal organic anion transporters
(OAT, inhibited by probenecid) and organic cation trans-
porters (OCT, inhibited by cimetidine).””"8 |n addition to
previously known OCTs, cimetidine was reported to in-
hibit MATE-1 (multidrug and toxin extrusion 1).8%8
Complicated drug-drug interactions due to alterations
in the genetic expression level of transporter proteins
have also been reported (Table 3)9'%* For example,
drug-drug interactions resulting from genetic regulation
were not observed in acute treatment with amiodarone,
Only via repeated administration and fonger onset
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Figure 4 Inhibition of brush-border membrane vesicles uptake of L-Dopa derivatives by amino acids (L-phenylalanine and

L-dopa), dipeptides (Gly-Pro, Gly-Phe}, and the amino-f-lactam cephradine.
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OCT = organic cation transporter isoform 2;-(h}OAT3 =

transporter 1; P-gp = P-glycoprotein.

(human) organic anion transporter isoform 3; hOAT1 = human organic anion trans- '

porter isoform 1; MATE-T = mult:drug and toxin extrusion transporter; BCRP = breast cancer resistance protein; MCT‘i monacarboxylate
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Table 3 Examples of drug- drug mteractlon resultmg from alteratlons in genetlc expressmn of renal transporters
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time and duration did drug-drug interaction result with
amiodarone, highlighting a potential risk of certain drugs
used in chronic disease management’ Cloned renal
drug transporters have been useful tools for studies on
these interactions.” " Transporter-associated evidence
of drug-drug interactions also forms the basis for pharma-
covigilance evaluation by regulatory agencies such as the
US Food and Drug Administration,*

8. Conclusion

The biological system is full of mechanisms that ma-
nipulate drug behavior. ADME, the mechanisms of
drug-host interaction, are thus important and use-
ful sites to optimize drug PD/PK profile as well as to
minimize drug toxicity. Additionally, they are won-
derful resources for designing new chemical entities
as therapeutic agents during the early stages of drug
discovery. This review highlights current research in
using ADME as a proactive approach for PD/PK opti-
mization. Use of D-phenylglycine as a delivery moiety
for guiding o-methyldopa and L-dopa te transport
via intestinal PEPT1 transporter was presented as im-
proving the oral bioavailability. This indicates that the
ADME mechanism is an interesting target for new drug
design.
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